Serum Response Factor Is Essential for Prenatal Gastrointestinal Smooth Muscle Development and Maintenance of Differentiated Phenotype
نویسندگان
چکیده
BACKGROUND/AIMS Smooth muscle cells (SMCs) characteristically express serum response factor (SRF), which regulates their development. The role of SRF in SMC plasticity in the pathophysiological conditions of gastrointestinal (GI) tract is less characterized. METHODS We generated SMC-specific Srf knockout mice and characterized the prenatally lethal phenotype using ultrasound biomicroscopy and histological analysis. We used small bowel partial obstruction surgeries and primary cell culture using cell-specific enhanced green fluorescent protein (EGFP) mouse lines to study phenotypic and molecular changes of SMCs by immunofluorescence, Western blotting, and quantitative polymerase chain reaction. Finally we examined SRF change in human rectal prolapse tissue by immunofluorescence. RESULTS Congenital SMC-specific Srf knockout mice died before birth and displayed severe GI and cardiac defects. Partial obstruction resulted in an overall increase in SRF protein expression. However, individual SMCs appeared to gradually lose SRF in the hypertrophic muscle. Cells expressing low levels of SRF also expressed low levels of platelet-derived growth factor receptor alpha (PDGFRα(low)) and Ki67. SMCs grown in culture recaptured the phenotypic switch from differentiated SMCs to proliferative PDGFRα(low) cells. The immediate and dramatic reduction of Srf and Myh11 mRNA expression confirmed the phenotypic change. Human rectal prolapse tissue also demonstrated significant loss of SRF expression. CONCLUSIONS SRF expression in SMCs is essential for prenatal development of the GI tract and heart. Following partial obstruction, SMCs down-regulate SRF to transition into proliferative PDGFRα(low) cells that may represent a phenotype responsible for their plasticity. These findings demonstrate that SRF also plays a critical role in the remodeling process following GI injury.
منابع مشابه
Nuclear PTEN functions as an essential regulator of SRF-dependent transcription to control smooth muscle differentiation
Vascular disease progression is associated with marked changes in vascular smooth muscle cell (SMC) phenotype and function. SMC contractile gene expression and, thus differentiation, is under direct transcriptional control by the transcription factor, serum response factor (SRF); however, the mechanisms dynamically regulating SMC phenotype are not fully defined. Here we report that the lipid an...
متن کاملMulti-phenotypic Role of Serum Response Factor in the Gastrointestinal System
Serum response factor (SRF) is a master transcription factor of the actin cytoskeleton that binds to highly conserved CArG boxes located within the majority of smooth muscle cell (SMC)-restricted promoters/enhancers. Although most studies of SRF focus on skeletal muscle, cardiac muscle, and vascular SMCs, SRF research has recently expanded into the gastrointestinal (GI) system. Genome scale ana...
متن کاملUnTEThering (smooth muscle) cell plasticity.
C ellular plasticity has become the subject of intense research, with perhaps the greatest example provided by the recent Nobel Prize winners Drs Yamananka and Gurdon and the demonstration that terminally differentiated fibro-blasts can be coaxed into assuming an embryonic stem cell-like fate. Emerging evidence suggests that plasticity inherent in cells may be hijacked in the progression of dis...
متن کاملIntraluminal pressure is essential for the maintenance of smooth muscle caldesmon and filamin content in aortic organ culture.
Different forms of mechanical stimulation are among the physiological factors constantly acting on the vessel wall. We previously demonstrated that subjecting vascular smooth muscle cells (VSMCs) in culture to cyclic stretch increased the expression of high-molecular-weight caldesmon, a marker protein of a differentiated, contractile, VSMC phenotype. In the present work the effects of mechanica...
متن کاملNox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype.
OBJECTIVE The mechanisms responsible for maintaining the differentiated phenotype of adult vascular smooth muscle cells (VSMCs) are incompletely understood. Reactive oxygen species (ROS) have been implicated in VSMC differentiation, but the responsible sources are unknown. In this study, we investigated the role of Nox1 and Nox4-derived ROS in this process. METHODS AND RESULTS Primary VSMCs w...
متن کامل